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Abstract 

Statistical Energy Analysis (SEA) is generally used for the high frequency analysis in various areas. In the present 
paper a SEA-related study concerning coupled structures consisting of beams and plates is discussed. Firstly, the 
Fourier technique is explained to obtain the energies and power flows for excitation on the beam and the plate. Then, 
these are used in the Power Injection Method (PIM) to obtain the effective Coupling Loss Factors (CLFs) of the single 
beam-plate system. Overlapping octave bands are used in a frequency average approach. Based on the analysis for the 
beam-plate structure, the beam-plate-beam structure is also investigated in the SEA framework. It is found that the 
indirect coupling in an SEA sense may exist for such a beam-plate-beam coupled structure. The numerical result shows 
that its effect is larger when the dimensions of beams are similar.
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1. Introduction 

At high frequencies the dynamic response is in-
creasingly sensitive to structural details (Kompella 
and Bernhard, 1993) and this means that the exact 
modelling of a particular system using such as Finite 
Element Method (FEM) is limited and impractical 
(Lyon and DeJong, 1995). Thus high frequency ana-
lysis should be carried out in a different way, i.e. a 
statistical approach which provides more useful 
spatial and frequency average behaviour. The most 
widely accepted is Statistical Energy Analysis (SEA) 
(Fahy, 1994), in which the system is considered to be 
an assembly of subsystems and each subsystem is 
assigned a single energy degree of freedom (ESDU 
99009). The coupling loss factor (CLF) describes the 
power transferred through a junction between sub-

systems. SEA is generally used in various areas such 
as buildings (Craik, 1996), aerospace applications 
(Jayachandran and Bonilha, 2003) and more recently 
automotive vehicles (Noguchi et al., 2006).  

The present paper deals with beam-plate coupled 
structures in terms of the SEA framework. Some of 
previous studies concerning coupled structures con-
sisting of beams and/or plates are here reviewed. 

Two line-coupled finite rectangular plates were 
investigated by Wester and Mace (1996). The res-
ponse of the system was described using a wave 
approach. The subsystem was assumed to be drawn 
from an ensemble. It was shown that the traditional 
SEA hypothesis of power proportionality is exact for 
the ensemble average response of the plate systems, 
regardless of the strength of coupling. 

Strasberg and Feit (1996) derived a simple ex-
pression for the vibration damping induced by a 
multitude of small sprung masses without using a 
probabilistic approach and applied this to a simple 
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structure consisting of a beam and a plate. From this 
study it is observed that a so-called fuzzy structure 
behaves mainly as damping to the master structure 
and the level of the damping is independent of the 
dissipation factor of the attachments. 

Grice and Pinnington (1999) used a wave analysis 
to study a built-up structure consisting of a stiff beam 
and flexible plate in which the beam is seen as a 
source and the plate as a receiver. If the flexural 
wavenumber in the plate is at least twice as large as 
the coupled wavenumber in the beam, the dynamic 
behaviour of the beam can be described in terms of 
the locally reacting impedance of the plate

The power mode approach was used to a built-up 
structure consisting of a stiff beam (source) and a 
flexible plate (receiver) connected through a discrete 
coupling (Ji et al., 2003). If the receiver structure is 
much more flexible than the source, the approximate 
power transmission can be given simply, incor-porating 
the mobilities of the uncoupled source and receiver. 

As seen, it seems difficult to find SEA-based 
studies that deal with beam-plate coupled systems. 
Such evaluation provides the motivation of the 
present study.

A Fourier approach is introduced in this paper to 
make numerical models of such beam-plate (-beam) 
systems. These models satisfy energy conservation 
(thus power balance). The validity of the numerical 
model is experimentally shown. In SEA, a complex 
system is notionally divided into a number of 
subsystems that are connected through junctions. SEA 
parameters such as CLFs will depend on how the 
subsystems are chosen. For a beam-plate coupled 
structure, the subsystems can conveniently be chosen 
as the beam and the plate. As the cases in which the 
external force is applied to the beam and then to the 
plate are analysed using the Fourier approach, SEA 
parameters are evaluated for these cases based on the 
power balance equations. 

Although the SEA systems should be evaluated 
strictly in terms of ensemble averages (Lyon and 
DeJong, 1995), the application based on the ensemble 
is often impractical. It is known that the variance of 
the response over the ensemble decreases when the 
frequency averaging bandwidth increases (ESDU 
99009). Thus, the frequency average technique is 
used here instead of using the ensemble average. Also 
predictions of the spatial sum of the energy of a 
subsystem are made instead of the response at any 
particular point in the subsystem. 

Finally, the effective CLFs obtained for the single 
beam coupled structure are used in a SEA model to 
predict the subsystem energies of a beam-plate-beam 
coupled structure. The SEA model used assumes only 
direct coupling, i.e. no indirect coupling between the 
beams. Then, the predicted energies are compared 
with those calculated exactly with the Fourier 
technique and discrepancies are noted. 

The beams are modelled based on Euler-Bernoulli 
beam theory and an isotropic plate is assumed. An 
external point force is applied normal (i.e. z direction) 
upon the beam or plate. Only flexural motion (in the z
direction) for both the beam and plate is taken into 
account, which is the most important energy-carrying 
wave. Meanwhile, it may also be expected that 
transversal or rotational beam motion occurs (i.e. 
motion in the y direction), which includes rigid 
behaviours. The transversal motion coupled to the 
plate in-plane motion would be found relatively at 
high frequencies where only a few numbers of 
corresponding modes exist. Especially, under such a 
loading condition, the energy portion due to the beam 
rotation would be very small comparing with the 
flexural motion energy. Thus, one can expect that the 
present study based on the consideration of only the 
flexural motion remains reasonable. Note that SEA 
deals with modal energies, so that a few particular 
modes are not of concern and no modal energy occurs 
due to rigid motion. Also note that numerical models 
in the present study based on only the flexural waves 
satisfy energy conservation. 

2. Analytical model of a beam-plate-beam 
structure 

First of all, in this chapter a numerical model to be 
used for SEA is introduced. Among various appli-
cable approaches, the present study uses a Fourier 
method, which can be considered exact for the pre-
sent boundary condition. A particular coupled system 
of two beams coupled through a plate is taken into 
account here and the plate is excited. Note that either 
a beam-plate system or a beam-excited condition can 
also be considered instead. 

2.1 Motion of the coupled structure 

The coupled structure consisting of two infinite 
beams and an infinitely long finite width plate can be 
analysed using a Fourier transform technique. The  
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Fig. 1. A built-up structure consisting of infinite two beams 
attached to an infinitely long finite width plate and the force 
relationship between them. 

 
corresponding subsystems of such a structure and 
their force relationships are shown in Fig. 1. Har-
monic motion at frequency  is assumed and the 
beams are assumed to be infinitely stiff to torsion 
along 1 0y  and 2 2y L . 

The external point force is only acting on the plate 
located at 1 1y L  and the force is defined by 

0 1 1( ) ( )F x x y L  where  is the Dirac delta 
function. When the infinitely long finite width plate 
and the infinite beam (beam 1b ) are joined along the 
line 1 0y , a force per unit length 1( )f x  acts 
between them as shown in Fig. 1.  Now considering 
all forces related to beam 1b , the flexural motion of 
this beam with damping becomes 

 
4

21
1 1 14

( ) ( ) ( )b
b b b

w xD m w x f x
x

  (1) 

 
where subscript b1 stands for beam 1b , bD  is its 
complex bending stiffness and 1bm  is its mass per 
unit length. In the same manner, the equation of 
motion for the other beam (beam 2b ) is  
 

4
22

2 2 44
( ) ( ) ( )b

b b b
w xD m w x f x

x
.  (2) 

 
The spatial Fourier transforms of Eqs. (1) and (2) 

give respectively 
 

4 2
1 1 1 1( ) ( ) ( )b x b x b b x xD k W k m W k F k   (3) 

4 2
2 2 2 4( ) ( ) ( )b x b x b b x xD k W k m W k F k   (4) 

 
where 1( )b xW k  and 2( )b xW k  are the Fourier trans-
formed displacement of beams 1b  and 2b  respec-
tively and 1( )xF k  and 4( )xF k  are the Fourier trans-
forms of 1( )f x  and 4( )f x  respectively. 

Also, the equation of flexural motion of the free 

plate with damping is  
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where pD  is its complex bending stiffness and pm  
is its mass per unit area of the plate. The cor-
responding Fourier transform of Eq.(5) is  
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where ( , )p xW k y  is the Fourier transformed dis-
placement of the plate. If harmonic waves in the 
plates are assumed, the wavenumber relationship can 
be defined. For waves of the form y xk y ik xe e  the 
wave propagating or decaying away from the junction 
of beam 1b  and the plate is defined as 

 
2 2

1y x p yk k k k ,  (7a) 

2 2
2y x p yk k k k   (7b) 

 
where pk  is the plate free wavenumber. Meanwhile, 
the positive square roots are assumed for waves 
travelling towards the junction and are found to be 

 
2 2

3y x p yk k k k ,  (7c) 

2 2
4y x p yk k k k .  (7d) 

 
If x pk k , then wavenumbers 1yk  and 3yk  are 
considered as travelling waves, and 2yk  and 4yk  
are considered as nearfield waves. Conversely, if 

x pk k , then all of them behave as nearfield waves. 
Then the motion of plate 1p  can be written as 
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and for plate 2p , 
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Note that different local coordinate systems are 
used in Eqs. (8) and (9) in describing the motion of 
the plate i.e. 1( )y y  for plate 1p  and 

2 1( )y y L  for plate 2p .
The response of the beams and the plates can be 

obtained based on application of the appropriate 
boundary conditions.  

(i) Continuity equation for beam 1b  and plate 
1p ; equal displacement to the plate at 1 0y  of 

plate 1p

1
1 1 10
( , ) ( )p x b xy

W k y W k   (10) 

(ii) Sliding condition; beam 1b  is assumed infi-
nitely stiff to torsion along 1 0y  of plate 1p

1

1 1

1 0

( , )
0p x

y

W k y
y

  (11) 

(iii) Force equilibrium condition; the force on plate 
1p  are equal and opposite to the respective force on 

beam 1b

1

3
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  (12) 

(iv) Continuity equation for plate 1p and plate 
2p ; equal displacement at junction 1 1y L  of plate 
1p  and 2 0y  of plate 2p

1 1 2
1 1 2 2 0
( , ) ( , )p x p xy L y

W k y W k y   (13) 

(v) Continuity equation for plate 1p and plate 2p ;
equal rotational displacement at junction 1 1y L  of 
plate 1p  and 2 0y  of plate 2p

1 1 2

1 1 2 2

1 2 0

( , ) ( , )p x p x

y L y

W k y W k y
y y

  (14) 

(vi) Moment equilibrium condition; the moments 
acting on plates 1p  and 2p  are equal at junction 

1 1y L

1 1 2
1 1 2 2 0
( , ) ( , )p x p xy L y

M k y M k y   (15) 

where ( , )p x iM k y  is the Fourier transform of the 
moment per unit length ( , )p iM x y  acting on edges 
of a plate and given by 

2
2

2
( , )

( , ) ( , )p x i
p x i p x p x i

i

W k y
M k y D k W k y

y
,

1,2i .  (16) 

(vii) Force equilibrium condition; the forces acting 
at junction 1 1y L  of plate 1p  and 2 0y  of 
plate 2p  should be in equilibrium with the applied 
external force as shown in Fig. 1. 

1 1 2
2 1 3 2 00
( , ) ( , ) ( )x x xy L y

F k y F k y F k   (17) 

where 2 1( , )xF k y , 3 2( , )xF k y  and 0( )xF k  are the 
Fourier transforms of the forces 2 1( , )f x y , 3 2( , )f x y
and 0 1( )F x x  respectively. 

(viii) Continuity equation for plate 2p  and beam 
2b ; equal displacement to the plate at 2 2y L  of 

plate 2p

2 2
2 2 2( , ) ( )p x b xy L

W k y W k   (18) 

(ix) Sliding condition; beam 2b  is assumed infi-
nitely stiff to torsion along 2 2y L  of plate 2p

2 2

2 2

2

( , )
0p x
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  (19) 

(x) Force equilibrium condition; the force on plate 
2p  are equal and opposite to the respective force on 

beam 2b
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The equations representing boundary conditions 

(10), (11), (12), (13), (14), (15), (17), (18), (19) and 
(20) can be expressed in a matrix form. The matrix 
form of the equations in the wavenumber domain is 

 
Ku = F   (21) 
 

where the dynamic stiffness matrix K  is 
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where 4 2
1 1b b x bK D k m , 4 2

2 2b b x bK D k m , 
3 2(2 )i yi x yik k k  and 2 2

i yi xk k  for i 1, 
2, 3, and 4. Also, the displacement vector u in terms 
of the wave amplitudes in the plate and the 
transformed beam displacements is 
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T
x x x b x b x
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and the force vector is 

 

00 0 0 0 0 0 ( ) / 0 0 0 .
T

x pF k DF   (24) 

 
Thus, if the excitation force is known, the response 

of the beams and the plates can be found from the 
solution of Eq. (21) as follows. 

 
1u = K F .  (25) 

 
As the response of the coupled structure consisting 

of infinite beams and the infinitely long finite width  

 
Fig. 2. A built-up structure consisting of two finite beams 
attached to a rectangular plate. 

 
plate is identified, the response of a finite structure 
such as the structure shown in Fig. 2 can be obtained 
based on a Fourier series expansion. 

The response of beam 1b  that has ‘sliding beam 
ends’ is written as 

 

1,0
1 1, ,

1

( ) cos( )
2
b

b b n x n
n

W
w x W k x   (26) 

 
where ,x n xk n L  and 1, 1 ,( )b n b x nW W k  is the 

thn  component of the motion of the coupled beam 
1b , which is defined in Eq. (25). Similarly, the 

responses of the other beam and plates could be found 
using Eq. (26) where 2bW , 1pW  and 2pW  should 
be used respectively. 

The same procedure can be used if an external unit 
force is applied at a beam. Although the details are 
not shown here, as there are only six unknowns, the 
dynamic behaviours of the same waveguide structure 
consisting of infinite systems can be found. Then the 
response of the finite coupled system can be obtained 
using a Fourier series such as Eq. (26) for the sliding 
beam ends. The dynamic response of a single beam 
coupled system can be found in a similar manner. 

 
2.2 Experimental verification 

The numerical results obtained based on the 
Fourier transform technique is compared with 
experiments. Note the in the Fourier technique, the 
ends of the two beams experience sliding conditions. 
Meanwhile, in the experiment the boundaries are free, 
as sliding boundary conditions cannot be realised.  

It is clear that extending the range for the Fourier 
transform in Eq. (26) produces better results. 
However, it also requires more computational time 
and thus in the present case, a total of 120 Fourier 
components is used. These components can describe 
all possible behaviours in the frequency of interest 
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(5.6 – 1412 Hz) 

 
Fig. 3. Comparison of power balance for the coupled structure 
shown in Fig. 2 (beam excited). Power input ( ) and the 
sum of powers dissipated in all subsystems ( ). 

 
Table 1. Nominal dimensions of the coupled structure shown 
in Fig. 2. 

Beam length, xL  (m) 1.0 

Beam height, h (mm) 23.7 

Beam thickness, bt  (mm) 6.0 

Plate width, yL  (m) 0.75 

Plate thickness, pt  (mm) 6.0 

 
Before considering experiments for the verification 

of the numerical model, the power balance (thus 
energy conservation) between subsystems is first 
checked. Power input for the present point excitation 
and the corresponding power sum dissipated in all 
subsystems are compared in Fig. 3. The dissipated 
power is calculated from the strain energy of each 
subsystem. One can see that the power balance holds 
(maximum errors of 0.0%). 

The numerical results are now compared with the 
experiments in terms of energy and power. The 
experimental system is made of Acrylic Perspex. The 
nominal dimensions are shown in Table 1. The basic 
material properties such as mass per unit length, 
density, Young’s modulus and damping loss factor 
are measured. A pseudo-random force was applied at 
beam b1 (0.36 m from the end of beam 1) using the 
exciter and the laser vibrometer was used to measure 
the velocity. A beam instead of a plate was excited to 
avoid the mass effect due to the force transducer, even 
though the mass effect is not negligible at high 
frequencies in such a situation. Measurement points 
were selected randomly over the plate (20 points) and 
the beams (10 points each), and used to give an 
estimate of the spatially averaged energy. 

The energy and power refer to values normalised  

 
Fig. 4. Input power in one-third octave bands for the beam-
plate-beam system. , calculation; , experiment. 

 
by the mean square force, which is convenient when 
they are expressed in terms of spatial averages. The 
power input in one-third octave bands is shown in Fig. 
4. The result of the Fourier method is in quite good 
agreement with that of the experiment.  

A general level difference is found between the 
numerical model and the experiment at high 
frequencies. It seems to be related to the mass of the 
force transducer. The difference is about 4 dB at 1412 
Hz. 

One can find that there is a consistent frequency 
shift in the general trend especially above 100 Hz. It 
seems for example that the dip of 250 Hz in the 
experiment moves to 315 Hz in the numerical result. 
The frequency shift may be explained in terms of 
different boundary conditions (sliding and free) and 
corresponding motion of an uncoupled beam. 
Consider the uncoupled beam having the same beam 
properties. If the beam ends are sliding, then there is a 
natural frequency of the beam at 356.1 Hz where the 
beam has 4 nodal points in its bending mode 
( 4bk ). The most similar experimental motion 
having 4 nodal points occurs at 273 Hz in the beam 
where the beam ends are free (although strictly the 
two motions are different especially at the ends of the 
beam). The frequency shift occurs by about a factor 
of 1.30 ( 356.1 273 ) for these similar modes, which 
is similar to the shift seen in Fig. 4. Frequency shifts 
in the other peaks and dips shown in Fig. 4 may also 
be explained in a similar way. 

The energy ratio between the various subsystems is 
compared. This has the advantage of reducing the 
effect of boundary conditions and cancelling out any 
mass effect. Also, the differences in response level are 
eliminated by comparing the energy ratios. Figure 5 
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shows the one-third octave band averages of the  

 

 
(a) energy ration 1E Eplate b , (b) energy ratio 2 1E Eb b . 

Fig. 5. Energy ratio in one-third octave bands for the two-
beam-plate system. The Fourier method and experimental 
results for , Fourier method; , experiment. 

 
energy ratios between the subsystems for both the 
Fourier method and the experiment. It can be seen 
that the numerical model replicates the experimental 
situation well, although the frequency shift is found 
due to the same reason of the boundary condition as 
explained. 
 

3. Energy prediction for a beam-plate-beam 
structure 

The principal objective of SEA is to establish a 
model which can be used to predict the average 
responses of a coupled structure in terms of the gross 
parameters of the subsystems of the original structure. 
The main parameters required in this process are the 
subsystem dissipation loss factors and the coupling 
loss factors. As the system is described in terms of 
subsystem energies, the analysis procedure is 
normally carried out with a power balance equation 
for each of the subsystems. A structure consisting of 
just two subsystems is usually taken into account 
(Lyon and DeJong, 1995), in this case a beam-plate 
coupled structure. The detail backgrounds for an SEA 

model consisting of two subsystems are not presented 
here. 

As it is normally assumed that the interaction 
between two subsystems is not affected by the 
presence of a third subsystem (Lyon and DeJong, 
1995), using the coupling loss factors obtained from 
the single beam structure, it would seem possible to 
predict using SEA the energy of each subsystem of a 
beam-plate-beam coupled structure shown in Fig. 2. 
As the Fourier technique can also be applied to 
predict the response of the two-beam coupled 
structure this is used to give an ‘exact’ result for 
comparison. The two beams are chosen to have 
different dimensions initially. 

 
3.1 SEA power balance relationships for a beam-

plate-beam coupled structure 

To predict the energy of a subsystem, firstly it is 
necessary to identify the power balance relationship 
in terms of a SEA model. The power balance rela-
tionships for the coupled structure consisting of three 
subsystems are shown in Fig. 6 and the corresponding 
power balance equations for the different excitation 
cases can be derived. In this section to avoid con-
fusion in the notation, beam 1 is named subsystem 1, 
the plate is named subsystem 2 and the second beam 
is named  subsystem 3 (or beam 3). 

Note that there is no direct power transfer between 
subsystem 1 and subsystem 3 in the figure.  

That is, as in the traditional SEA framework (Lyon 
and DeJong, 1995), the hypothesis is taken into 
account that the coupling between subsystem 1 (beam 
1) and subsystem 3 (beam 3), so-called ‘indirect 
coupling’, does not exist. This is generally true 
because SEA assumes ‘weak coupling’ between two 
subsystems, which ensures that indirect interaction 
via any other subsystem is negligible (Fahy, 1994). 
However, it will be shown later that this may not be 
true for the particular coupled systems considered in 
the present study. 

If an external force is applied to subsystem 1 as in 
Fig. 6 (a), using the ensemble notation  ‘-’, the 
power balance equations are 

 
(1) (1) (1)

1, 121,in disP P P   (27. a) 
(1) (1) (1)

12 232,disP P P   (27. b) 
(1) (1)

23 3,disP P   (27. c) 
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(a) Power input to subsystem 1 

 
(b) Power input to subsystem 2 

 
(c) Power input to subsystem 3 

Fig. 6. Power balance between subsystems of the coupled 
structure as in Fig. 2. 

 
where ijP  is the net transferred power between 
subsystem i  and j  and inP  and ,i disP  are the 
input power and the net dissipated power by 
subsystem i . The superscript indicates which 
subsystem is being excited. 

Similarly, if the force is applied to subsystem 2 as 
in Fig. 6 (b), then the power balance equations are 

 
(2) (2) (2) (2)

2, 21 232,in disP P P P   (28. a) 
(2) (2)

21 1,disP P   (28. b) 
(2) (2)

23 3,disP P .  (28. c) 

 
Also, if the force is applied to subsystem 3 as in Fig. 

6 (c), then the power balance equations are 
 

(3) (3) (3)
3, 323,in disP P P   (29. a) 
(3) (3) (3)

32 212,disP P P   (29. b) 

(3) (3)
21 1,disP P .  (29. c) 

 
Introducing the relationship between the dissipated 

power and stored energies i.e. ,i dis i iP E , with 
i  the internal loss factors, and ij ij i ji jP E E , 

with ij  the coupling loss factors, then the power 
balance equations corresponding to Eqs.(27)~(29) can 
be expressed as follows. 

 
(1) (1) (1) (1) (1) (1)

1, 1 12 1 21 2inP E E .  (30. a) 

(1) (1) (1) (1) (1) (1) (1) (1)
12 1 2 21 23 2 32 30 E E E . 

  (30. b) 
(1) (1) (1) (1) (1)
3 32 3 23 20 E E .  (30. c) 

(2) (2) (2) (2) (2) (2)
2, 12 1 2 21 23

(2) (2) (2)
2 32 3

inP E

E E
.  (31. a) 

(2) (2) (2) (2) (2)
1 12 1 21 20 E E .  (31. b) 

(2) (2) (2) (2) (2)
3 32 3 23 20 E E .  (31. c) 

(1) (3) (3) (3) (3) (3)
1, 3 32 3 23 2inP E E .  (32. a) 

(3) (3) (3) (3) (3)
12 1 2 21 23

(3) (3) (3)
2 32 3

0 E

E E
.  (32. b) 

(3) (3) (3) (3) (3)
1 12 1 21 20 E E .  (32. c) 

 
In Eqs. (30)~(32), powers and energies are time-

averaged quantities, 1 , 2  and 3  are the dam-
ping loss factors of the corresponding subsystems. 

 
3.2 Effective CLF 

Although the power balance equations are eva-
luated strictly in terms of ensemble averages, in real 
applications it is often difficult to realise an ensemble. 
Alternatively the power balance equations hold for 
an individual realisation and a CLF-like term may be 
obtained for a particular realisation. This is referred 
to as the effective CLF ˆ

ij  (Park et al., 2004). Thus, 
the effective coupling loss factors (CLFs) are obtained 
instead of the exact CLFs based on an average over 
an ensemble of realisations. Assuming ( )ˆ i

ij
( )ˆ j
ij , 

the effective CLFs can be obtained from Eqs. (30)~ 
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(32). Introducing a matrix form results in Eq. (33). 
 

1P E   (33) 

where 
 

(1)
1,

(2)
2,

(3)
3,

0 0

0 0

0 0

in

in

in

P

P

P

P   (34) 

(1) (2) (3)
1 1 1
(1) (2) (3)
2 2 2
(1) (2) (3)
3 3 3

E E E

E E E

E E E

E   (35) 

1 12

21

ˆ
ˆ
0

   2

12

21

32

ˆ
ˆ
ˆ

23ˆ     23

3 32

0
ˆ

ˆ
.                                       

 (36) 
 

Note that, here, the power flows and the stored 
energies are presented by space-averaged and fre-
quency-averaged representation such as the octave 
band frequency average and therefore the frequency 

 is the centre frequency of the corresponding 
octave band. 

 
3.3 Prediction of subsystem energy 

In Eq. (36), one can see that the matrix contains 
only the effective CLFs between subsystems 1 and 2 
or subsystems 2 and 3. These CLFs will be obtained 
from a beam-plate system. Therefore the energies E  
can be predicted using the CLFs earlier.  

 
11E P .  (37) 

 
In fact, in order to obtain the energy terms it is 

necessary to know the input powers of the beam-
plate-beam coupled structure. However, by scaling 
the total input power to unity, the energy normalised 
by the input power can be found from the coupling 
loss factors of the beam-plate coupled structure where 
excitation is applied separately to one of the sub-
systems and solving Eq.(33) for the known power 
input and coupling matrix. 

 
3.4 Numerical analysis of a beam-plate structure 

The effective CLFs are firstly obtained for the sin- 

Table 2. Material properties and dimensions of the baseline 
model shown in Fig. 7. 

Material Perspex Height of beam, 
h (mm) 68.0 

Young’s 
modulus, E  

(GNm-2) 
4.4 Beam length, 

xL  (m) 3.0 

Poisson’s ratio, 
 0.38 Plate width, Ly 

(m) 0.75 
Density,  

(kgm-3) 1152.0 Thickness, t  
(mm) 5.9 

DLF of the 
beam, 1  0.03 DLF of the 

plate, 2  0.01 

 

 
Fig. 7. A built-up structure consisting of a finite beam atta-
ched to a finite rectangular plate. 

 
gle beam coupled structure shown in Fig. 7, so that 
they can be used to predict the subsystem energies of 
a beam-plate-beam coupled structure. The material 
properties and the dimensions used are presented in 
Table 2. 

The Fourier technique is used to evaluate dynamic 
responses. The ends of the beam are assumed to be 
sliding and the plate is also assumed to be sliding 
along the edges 0x , xx L  and along the 
coupling junction 0y , while the opposite edge to 
the junction, yy L  is assumed to be pinned. Note 
that, in order to obtain the effective CLFs 12ˆ  (beam 
to plate) and 21ˆ  (plate to beam), it is necessary to 
consider both the beam-excited and the plate-excited 
cases simultaneously, and also assuming (1)ˆij

(2)ˆij . 
SEA was originally formulated for random forcing, 

so-called ‘rain-on-the-roof’ forcing, and the response 
of the system to the rain-on-the-roof forcing is taken 
to be the equivalent to the average response to the 
point forcing over all possible excitation locations 
(Lyon and DeJong, 1995). In the present study, 20 
excitation points are chosen randomly on both the 
beam and the plate and each is used to obtain total 
energy of the subsystem and total power input. The 
energy corresponding to each subsystem is obtained 
from the maximum strain energy. 

Frequency bands such as 1/3 octave or octave 
bands can be chosen for estimating the CLF, and in 
the present study the octave band is used. This is 
because it is necessary to include a sufficient number 
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of modes, especially for the beam which is much 
stiffer than the plate. Also, for obtaining enough 
information concerning coupling, an overlapping 
band technique is used, so that the data can be 
presented with a resolution of 1/3 octave bands. 

The calculated effective CLFs 12ˆ  and 21ˆ  are 
shown in Fig. 8. It can be seen that negative values of 
CLFs are found for frequency bands of 16, 20 and 25 
Hz. This is because there are not enough modes in the 
beam and correspondingly not enough energy in the 
beam. In fact, there is no mode between 11 and 35 Hz 
for the present coupled beam and the coupled 
structure is dominated by the plate motion. For 
example, at 21 Hz, the dominant mode of the coupled 
structure is flexural mode of the plate where the 
wavelength is about 1.0 m . Meanwhile the beam 
remains in rigid motion. Therefore, the small modal 
energy of the beam results in the negative value of the 
CLF. It is generally recommended to have at least 5 
modes in a band (Fahy and Mohammed, 1992). 

One of the general hypotheses of SEA is that ‘weak 
coupling’ is present. If the Smith criterion is used, 
where the coupling is considered weak when the CLF 

12  is smaller than the DLF of the source subsystem 
1 , that is 12 1  (Smith Jr, 1979), then the 

baseline model seems clearly to be in a strong 
coupling regime for the beam excited case, as seen in 
Fig. 8. Note that the DLF of the beam (source 
structure) 1  is 0.03 and the effective CLF 12ˆ  is 
about 0.1. Meanwhile, the plate excited case seems to 
be weakly coupled at high frequencies. 

 
3.5 Numerical analysis of a beam-plate-beam 

structure 
In this section, using the effective CLFs obtained 

based on the beam-plate structure, the energies nor- 
 

 
Fig. 8. Effective CLFs of the Baseline model. , 12ˆ ; 

, 21ˆ . 

malised by the total input powers of the beam-plate-
beam structure as in Fig. 2 are predicted and exa-
mined. The dimensions of the beams in the corres-
ponding beam-plate-beam coupled structure are 
shown in Table 3 and the other dimensions are the 
same as shown in Table 2 for the beam-plate structure. 
The height of beam 3 is arbitrarily chosen so that it 
has different wavenumbers from beam 1 ( 1 68mmh  
and 3 50mmh ), and it is expected that their modal 
behaviours are different. The uncoupled wavenumber 
of the 50 mm height beam is 17 % greater than that of 
the 68 mm height beam.  

The numerical calculation for the effective CLFs of 
a coupled structure where the beam height is 68 mm 
is carried out using the Fourier transform approach 
and then a 50 mm height beam case is considered. 
Then these effective CLFs are used to predict the 
normalised energy using Eq. (37) where excitation is 
applied to one of the subsystems. It is necessary to 
mention that the boundary conditions for the opposite 
edge of the plate coupled to a single beam is assumed 
to be a pinned condition as before, while the edges of 
a plate coupled to two beams are sliding. Although 
their boundary conditions are not the same, it is 
assumed that the effect of the boundary condition is 
small, especially at high frequencies. 

For comparison with the SEA predicted normalised 
energies, the comparable normalised energies are 
obtained directly from the beam-plate-beam structure 
using the Fourier technique. The responses are 
averaged over 20 point excitations separately applied 
to one of the subsystems only. The analytical solution 
for the motion of such a beam-plate-beam structure 
where a beam is excited can be found similarly as in 
Chapter 2. 

Firstly, the normalised energies when subsystem 1 
(beam 1) is excited are shown in Fig. 9. The same 
symbols in the lines are used to distinguish each 
subsystem. The thick lines indicate results obtained 
directly from the Fourier approach while the thin lines 
are obtained from the SEA model. 

 
Table 3. Dimensions of the built-up structure shown in Fig. 2. 

 Beam 1 
(subsystem 1) 

Beam 3 
(subsystem 3) 

Height of the beam, 
h (mm) 68.0 50.0 

Thickness, t (mm) 5.9 5.9 

Loss factor of the 
beam, 1  0.03 0.03 
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Fig. 9. Energies normalised by total input power (h1=68 mm, 
h3=50 mm. Beam 1 excited). Thick lines directly from the 
beam-plate-beam structure and thin lines based on the 
effective CLFs and solving the SEA model. ,   beam 
1; , plate; , beam 3. 

 
Significant differences are found at low frequencies. 

One can recall that the effective CLFs of the single 
beam structure show negative values around 20 Hz 
(see section 3.4). The lowest frequency bound where 
an effective CLF can be predicted is about 30 Hz in 
the present beam-plate coupled system considered. 
Thus, it can be said that the corresponding effective 
CLFs are not appropriate for the prediction of energy. 
However, the energies of each subsystem are in good 
agreement at higher frequency, especially for beam 1 
and the plate. There is some difference for the energy 
of beam 3. Note that this is the case when beam 1 is 
excited and this has higher response at high fre-
quencies than the other beam. 

For the plate-excited case, the corresponding results 
are shown in Fig. 10. It can be seen that they are 
generally in good agreement for all subsystems. The 
plate has the greatest response and the two beams, 
although slightly dissimilar, are significantly lower in 
response and not differing very much. This is 
probably the case of best agreement using the SEA 
model and the exact beam-plate-beam analysis. 

The case for excitation on beam 3 is shown in Fig. 
11. The normalised energies are generally in good 
agreement for beam 3 and the plate. However there is 
a big difference between the SEA prediction and the 
exact result for the non-excited beam (beam 1). 

From Figs. 9 - 11, one can see that the differences 
between the SEA and exact predictions for the 
normalised energies are greatest when the response of 
the non-excited beam subsystem is calculated for 
excitation on the other beam. Otherwise, for the case 
when the plate is excited, they show very good 
agreement. This may be due to the indirect coupling  

 
Fig. 10. Energies normalised by total input power (h1=68 mm, 
h3=50 mm. Plate excited). Thick lines directly from the 
beam-plate-beam structure and thin lines based on the 
effective CLFs and solving the SEA model. , beam 1; 

, plate; , beam 3. 

 

 
Fig. 11. Energies normalised by total input power (h1=68 mm, 
h3=50 mm. Beam 3 excited). Thick lines directly from the 
beam-plate-beam structure and thin lines based on the 
effective CLFs and solving the SEA model. ,   beam 
1; , plate; , beam 3. 

 
between beam 1 and beam 3. 

Previously it was mentioned that traditional SEA 
does not consider indirect coupling for a weakly 
coupled system. Whilst, one can recall that the beam-
plate coupled system discussed in the previous 
section where the beam is excited may be regarded as 
a strongly coupled system. Consequently, the hypo-
thesis that there is no indirect coupling in the present 
beam-plate-beam structure is not likely true. That is, 
although they are not coupled physically, in fact it 
seems true that there is a coupling so that power flow 
occurs between two indirectly coupled beams in an 
‘SEA sense’. One may also recall that the power 
balance hold for the Fourier model of the beam-plate-
beam system (see section 2.2). Thus, it should be 
noticed that whenever the indirect coupling is 
mentioned it is always in an ‘SEA sense’.  
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Fig. 12. Energies normalised by total input power (h1=68 mm, 
h3=67 mm. Beam 1 excited). Thick lines directly from the 
beam-plate-beam structure and thin lines based on the 
effective CLFs and solving the SEA model. ,   beam 
1; , plate; , beam 3. 

 

 
Fig. 13. Energies normalised by total input power (h1=68 mm, 
h3=67 mm. Plate excited). Thick lines directly from the 
beam-plate-beam structure and thin lines based on the 
effective CLFs and solving the SEA model. , beam 1; 

, plate; , beam 3. 

 
Such an effect was explained by Heron (1997), 

who introduced Advanced Statistical Energy Analysis 
(ASEA). ASEA allows for coupling between sub-
systems that are physically separate by a so-called 
‘tunnelling mechanism’ in which, even though the 
subsystems are physically separated from each other 
coupling may exist in an SEA sense. An additional 
explanation follows later in this section. 

Further investigation of this effect is carried out for 
the case when both beams have similar modal 
energies. To realise this situation, the height of beam 
3 is modified to 67 mm, which is close to that of 
beam 1 but not identical. Firstly, the results for 
excitation on beam 1 are shown in Fig. 12. It can be 
seen that the difference in the normalised energy of 
beam 3 is greater than that shown in Fig. 9. Moreover, 
the response of beam 1 is slightly lower than that  

 
Fig. 14. Energies normalised by total input power (h1=68 mm, 
h3=67 mm. Beam 3 excited). Thick lines directly from the 
beam-plate-beam structure and thin lines based on the 
effective CLFs and solving the SEA model. ,   beam 
1; , plate; , beam 3. 
 
predicted by the SEA model. 

However, if the plate is excited, good agreement is 
found between the results predicted using the CLFs 
and SEA and those directly obtained from the beam-
plate-beam Fourier analysis as shown in Fig. 13. 

Finally, the results for excitation on beam 3 are 
shown in Fig. 14. One can see that the difference for 
the response of beam 1 again increases as frequency 
increases. 

Therefore, from Figs. 12-14, it can be inferred that 
the indirect coupling effect plays an important role for 
such a beam-plate-beam coupled structure. To get 
accurate results using the SEA model it is insufficient 
to use only the direct effective CLFs calculated 
between a plate and a beam.  

The emphasis should be placed on that the indirect 
coupling mentioned here does not mean that energy 
flows from the excited beam to the other beam 
without passing through the plate connecting two 
subsystems (Fahy, 1994). It does mean that the SEA 
framework does not include all mechanism of energy 
flow that exists in the present beam-plate-beam 
system. A study that considers indirect coupling could 
be carried out, for example, using the ASEA men-
tioned. This will be the subject of a future study. 
 

4. Conclusions 

Coupled systems of beams and a plate have been 
investigated in the SEA framework. 

The power and energy of the subsystems are 
obtained from the Fourier technique. The numerical 
results of this method have been experimentally 
verified. 
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Then, using the Fourier model, the effective cou-
pling loss factor (CLF) of a beam-plate coupled 
structure has been investigated in terms of the SEA 
framework. Although the actual CLF is defined in 
terms of an ensemble average, the frequency average 
technique is used here instead of the ensemble 
average. The CLFs are presented in overlapping 
octave frequency bands. It seems that the beam-plate 
model behaves as a strongly coupled system for 
power flow from the beam to the plate. 

An attempt has been made to predict the subsystem 
energy of the beam-plate-beam structure using the 
effective CLFs previously obtained from the beam-
plate structure. The energy normalised by input power 
has been compared with that directly obtained from 
the Fourier approach. They are generally in good 
agreement at high frequencies for the plate-excited 
situation. However, when one beam is excited, the 
normalised energy of the other beam shows some 
discrepancy. It seems that this may occur due to the 
indirect coupling effect in an SEA sense between the 
two beams. The discrepancy is largest when the 
beams are similar. A further study remains for this. 

Nomenclature ---------------------------------------------------------- 

,B C  : Wave amplitude in a plate (m) 
D  : Beam stiffness (Nm2); plate stiffness  

  (Nm) 
E  : Young’s modulus of elasticity (N/m2);  

  energy 
iF  : Spatial Fourier transform of force if

  (N/m) 
xL  : Length of a beam (m) 
yL  : Width of a plate (m) 

P  : Power 
W  : Spatial Fourier transform of  
  displacement w  (m) 
f  : Frequency (Hz) 
if  : Force per unit length (N/m) 

h  : Height of a beam 
i  : 1
k  : Wavenumber

pk  : Uncoupled free wavenumber in a plate 
xk  : Coupled travelling trace wavenumber  

  of a beam
yk  : Trace wavenumber in a plate
bm  : Mass per unit length of a beam (kg/m) 
pm  : Mass per unit area of a plate (kg/m2)

t  : Thickness (m) 

w  : Displacement (m)
, ,x y z  : Co-ordinates 
 : Constant 

: Constant
 : Dirac delta function 
 : Dissipation loss factor (-) 

ij  : Ensemble average coupling loss factor 
ˆij  : Effective coupling loss factor 

 : Wavelength (m) 
 : Poisson’s ratio 
 : Radian frequency (rad/s) 
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